

Max. Marks: 60

JB 2 MR BATCH PHYSICS : DCT Topic: NLM + Work Energy Power

- 1. A body is at rest under the action of three forces, two of which are $\vec{F_1} = 4\hat{i}, \vec{F_2} = 6\hat{j}$. The third force is:
 - (a) $4\hat{i} + 6\hat{j}$ (b) $4\hat{i} 6\hat{j}$ (c) $-4\hat{i} + 6\hat{j}$ (d) $-4\hat{i} 6\hat{j}$
- 2. The time taken by a block of wood, initially at rest to slide down a smooth inclined plane 9.8 m long (angle of inclination = 30°) is:

3. A wooden block is placed on an inclined plane. The block just begins to slide down when the angle of the inclination is increased to 45°. What is the coefficient of friction?

- (a) 0.25 (b) 0.75 (c) 1 (d) 0.5
- 4. A block pressed against a vertical wall is in equilibrium. The minimum coefficient of friction is:

Space for Rough Work

Date: 25.09.2022

- 5. A man wants to remain in equilibrium by pushing his hands and feet against two vertical parallel walls as shown in the figure.
 - A. He must exert equal forces on both walls
 - B. The forces of friction at both walls must be equal
 - C. The coefficients of friction between man and wall must be the same at both ends
 - D. Friction must be present on both walls

- (a) A and B are correct
 (b) A and C are correct
 (c) A and D are correct
 (d) All correct
- 6. Three blocks of equal masses (each 3 kg) are suspended by weightless strings as shown. If the applied force is 100 N, then is equal to: $(g = 10 \text{ m/s}^2)$

7. A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and the wall is 0.2 The weight of the block is

8. Three blocks of masses 1 kg, 4 kg and 2 kg are placed on a smooth horizontal surface. If shown in the figure. Two horizontal forces 120 N and 50 N are applies on the system the acceleration of the system is

9. The rear side of a truck is open and a box of 40 kg mass is placed 5 m away from the open end as shown in the figure. The coefficient of friction between the box and the surface below itis 0.15. On a straight road the truck starts from rest and accelerates with 2 ms⁻². The distance travelled by the truck atthe time the box fall from it is (Ignore the size of the box)

(a)

2.0 kg

(b)

4.0 kg

10. The blocks A and B are arranged as shown in the figure. The pulley is frictionless. The mass of A is 10 kg. The coefficient of friction of A with the horizontal surface is 0.20. The minimum mass of B to start the motion will be

11. The coefficient of static friction, between block A of mass 2kg and the table as shown in the figure is 0.2. What would be the maximum mass value of block B so that the two blocks do not move? The string and the pulley are assumed to be smooth and massless. $(g = 10 \text{ m/s}^2)$

(d) 0.4 kg

12. A 50 kg person stands on a 25 kg platform. He pulls on the rope which is attached to the platform via the frictionless pulleys as shown in the figure. The platform moves upward at a steady rate if the force with which the person pulls the rope is:

13. Mass m rests on a horizontal surface. The coefficient of friction between the mass and the surface is μ . If the mass is pulled by a force F as shown in the figure, the limiting friction between the mass and the surface will be:

14. Two block each of mass M are resting on a frictionless inclined plane as shown in the figure. Then:

- (a) The block A moves down the plane (b) The block B moves down the plane
- (c) Both blocks remain at rest
- 15. An insect crawls up a hemispherical surface very slowly (see the figure). The coefficient of friction between the insect and the surface is 1/3. If the line joining the centre of the hemispherical surface to the insect makes an angle with the vertical, the maximum possible value of α is given by

(d)

Both the blocks move down the plane

Max Marks: 60

Date: 25.09.2022

JB 2 MR BATCH

CHEMISTRY: DCT

Topic: Structure of Atoms + Periodic + Mole Concept

- 16. The number of nucleons in chlorine-37 is
 - (a) 17 (b) 20 (c) 54 (d) 37
- 17. What is the work function of the metal if the light of wavelength 4000 A generates photoelectrons of velocity $6 \times 10^5 \text{ms}^{-1}$ form it? (Mass of electron = 9×10^{-31} kg, Velocity of light = $3 \times 10^8 \text{ms}^{-1}$, Planck's constant = 6.626×10^{-34} Js, Charge of

(Mass of electron = 9×10^{-19} kg, velocity of light = 3×10^{-19} ms , Planck's constant = 6.626×10^{-19} Js, Charge of electron = 1.6×10^{-19} JeV⁻¹)

- (a) 0.9 eV (b) 4.0 eV (c) 2.1 eV (d) 3.1 eV
- 18. The size of nucleus is of the order of
 - (a) 10^{-12} m (b) 10^{-8} m (c) 10^{-15} m (d) 10^{-10} m
- 19. The number of neutrons in the dipositive zinc ion (Mass no. of Zn=65)
 - (a) 35 (b) 33 (c) 65 (d) 67

20. A metal surface is exposed to solar radiations

- (a) The emitted electrons have energy less than a maximum value of energy depending upon frequency of incident radiations
- (b) The emitted electrons have energy less than maximum value of energy depending upon intensity of incident radiation
- (c) The emitted electrons have zero energy
- (d) The emitted electrons have energy equal to energy of photos of incident light
- 21. The number of unpaired electrons in the Fe^{3+} ion (atomic no. = 26) is
 - (a) 5 (b) 6 (c) 2 (d) 4
- 22. Uncertainty in the position of an electron (mass= 9.1×10^{-31} kg) moving with a velocity 300 m/s, accurate up to 0.001% will be: (h = 6.63×10^{-34} Js)

(a) 19.2×10^{-2} m (b) 5.76×10^{-2} m (c) 1.92×10^{-2} m (d) 3.84×10^{-2} m

Learning with the Speed of Mumbai and the Tradition of Kota

23.	To whi	ch of the following	is Bohr'	s theory applicable						
	(a)	He ⁺	(b)	Li ⁺²	(c)	Tritium	(d)	Be ⁺²		
	(a)	III, IV	(b)	I,II,III,IV	(c)	I,II	(d)	I,II,III		
24.	Find th	e value of oxidation	state of	$[Co in Ag(Co(CO)_4]]$:					
	(a)	1	(b)	-1	(c)	Zero	(d)	None of these		
25.	Which	of the following rea	ctions in	nvolve oxidation and	reductio	n?				
	(a)	$NaBr + HCl \rightarrow NaCl + HBr$				$HBr + AgNO_3 \rightarrow AgBr + HNO_3$				
	(c)	$\mathrm{H}_2 + \mathrm{Br}_2 \rightarrow 2 \ \mathrm{HBr}$			(d)	$Na_2O + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$				
26.	Manganese achieves its maximum oxidation state in its compound:									
	(a)	MnO_2	(b)	Mn_3O_4	(c)	KMnO ₄	(d)	K_2MnO_4		
27. 28.	Which (a) (b) (c) (d) The inc (a) (b) (c) (d)	statement is wrong Oxidation number Oxidation number Oxidation number Oxidation number Oxidation number correct order of decr $H_2S_2O_7 > Na_2S_4O_6$ $H_2SO_5 > H_2SO_3 >$ $SO_3 > SO_2 > S_8 > 1$ $H_2SO_4 > SO_2 > H_2$	of oxyg of oxyg of oxyg of oxyg easing c $> Na_2S$ $SCl_2 > H$ H_2S $S > H_2S$	en is +1 in peroxides en is +2 in oxygen di en is $-\frac{1}{2}$ in superoxid en is (-2) in most of i pxidation number of S ${}_{2}O_{3} > S_{8}$ ${}_{2}S$ ${}_{2}O_{8}$	fluoride les ts compo 5 in comj	ounds pound is :				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The reaction $3\text{CIO}^{-}(aq) \rightarrow \text{CIO}_{3}^{-}(aq) + 2\text{CI}^{-}(aq)$ is an example of :									
	(a)	oxidation			(b)	reduction	_			
	(c)	disproportionation			(d)	decomposition react	tion			
30.	The ox (a) (b) (c) (d)	idation number of a actual charge of th valency of the ator formal charge of th actual charge of th	n atom e atom n ne atom ne atom	in a given species (m if the atom exists as	olecule, a monoa	ion or free atom) is th atomic ion, or the hyp	ne : pothetica	al charge assigned to		
		the atom in the spe	cies by	simple rules.						

Max. Marks: 60

Date: 25.09.2022

JB 2 MR BATCH PHYSICS : DCT ANSWER KEY Topic: NLM + Work Energy Power

1.	(d)	2.	(b)	3.	(c)	4.	(c)	5.	(c)
6.	(a)	7.	(d)	8.	(b)	9.	(a)	10.	(a)
11.	(c)	12.	(b)	13.	(c)	14.	(a)	15.	(a)

Max Marks: 60

Date: 25.09.2022

JB 2 MR BATCH CHEMISTRY: DCT ANSWER KEY Topic: Structure of Atoms + Periodic + Mole Concept

16.	(d)	17.	(c)	18.	(c)	19.	(a)	20.	(a)
21.	(a)	22.	(c)	23.	(d)	24.	(b)	25.	(c)
26.	(c)	27.	(a)	28.	(d)	29.	(c)	30.	(d)